2022 Consumer Confidence Report WATER SYSTEM: Christian County Water District KY PWSID: KY0240521 CONTACT NAME: James Owen PHONE NUMBER: 270/886/3696 EMAIL: jameso@ccwd.net Public Meeting Location: 1940 Dawson Springs Road Hopkinsville, KY 42240 Date & Time: 1st Thursday each month at 6:00 pm We test our drinking water as required by the state and federal regulations. This report shows the results of monitoring from January 2022 to December 2022. Christian County Water District is only required to test for some contaminants periodically, so the results listed in this CCR may not be from the previous year. Only detected contaminants are included in this report. For a list of all contaminants we test for please contact us. #### WHERE DOES MY WATER COME FROM? SOURCE(S) OF WATER: Hopkinsville Water Environment Authority / Barkley Lake Water District / Todd County Water District Type of water source: SURFACE WATER Source Water Assessment/Wellhead Protection Program Information: On page 2&3 #### WATER QUALITY TABLES #### Table of Lead and Copper Detections | Contaminant
(units)
[Sample Year] | Action
Level
(AL) | MCLG | # of
Individual
Taps over
AL | 90% of taps
tested were
less than | Range of
Samples | In
Compliance? | Typical Source of Contamination | |---|-------------------------|------------|---------------------------------------|---|---------------------|---------------------|---| | Lead (ppb)
[2021] | 15 ppb | 0 ppb | 0 | 2 | 2-3 | yes | Corrosion of household plumbing systems; erosion of natural deposits | | | 0 out of 30 | taps were | found to have | levels in excess of | the lead action | level of 15 ppb | | | Copper (ppm)
[2021] | 1.3 ppm | 1.3
ppm | 0 | .136 | .003559 | yes | Corrosion of household
plumbing systems;
erosion of natural
deposits | | [-3] | 0 out of 30 | taps were | found to have | copper levels in e | xcess of the cop | per action level of | 1.3 ppm | #### Important Information about Lead Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Christian County Water District /s responsible for providing high quality drinking water and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact Christian County Water District at 270-886-3696 or office@ccwd.net. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead. #### Table of Disinfectants/Disinfection Byproducts and Precursors | MCLG or
MRDLG | MCL,
TT*, or
MRDL | Level
Detected | Range | In
Compliance? | Sample
Year | Typical Source | |------------------|-------------------------|------------------------------|--|---|---|---| | =4 | =4 | 1.56
(highest
average) | 0.20-2.50 | Yes | 2022 | Water additive used to control microbes | | N/A | 60 | 37
(high site
average) | 18-50 | Yes | 2022 | Byproduct of drinking water disinfection | | N/A | 80 | 45
(high site
average) | 22-87 | Yes | 2022 | Byproduct of drinking water disinfection | | | MRDLG
=4
N/A | MCLG or MRDL =4 =4 N/A 60 | MCLG or MRDL Level Detected =4 =4 (highest average) N/A 60 (high site average) N/A 80 (high site) | MCLG or MRDLG TT*, or MRDL Level Detected Range =4 =4 (highest average) 0.20-2.50 N/A 60 (high site average) 18-50 N/A 80 (high site average) 22-87 | MCLG or MRDL Level Detected Range Compliance? =4 =4 (highest average) 37 (high site average) 45 N/A 80 (high site Average) 45 (high site average) 45 (high site average) 45 (high site average) 45 Yes | MCLG or MRDL TT*, or MRDL Level Detected Range In Compliance? Sample Compliance? =4 =4 (highest average) 0.20-2.50 Yes 2022 N/A 60 (high site average) 18-50 Yes 2022 N/A 80 (high site high site average) 22-87 Yes 2022 | ## Hopkinsville Water Environment Authority Source Water Assessment The final source water assessment with a summary of our system's susceptibility to potential sources of contamination has been completed. A brief summary of this assessment for HWEA (PWSID #KY0240201) (WW0251) is as follows: An analysis of HWEA's water supply indicates that there are fifty-three potential contaminant sites with the possibility of contaminating the water supply located within the watershed. Sources of high potential impact include underground and above ground storage tank facilities, hazardous materials transfer and storage, and landfills, all of which share the possibility of leakage, spill, or leaching of unwanted contaminants. Sources of moderate to low potential impact include those from agricultural operations, an inactive rock quarry, and failing septic systems. The complete Susceptibility Analysis Report is available at the HWEA's main office located at 401 E. 9th Street, Hopkinsville . For more information, please call (270) 887-4147. Although these potential contaminant sources are within the HWEA watershed, the Moss Water Treatment Plant is able to treat the drinking water for its customers in accordance with all EPA Standards. If you suspect anyone discharging a contaminant in an unsafe manner, please call HWEA at (270) 887-4147 or the Division of Water at (270) 824-7532. #### **Barkley Lake Water District Source Water Assessment** The source of your drinking water is Lake Barkley, which is a surface water source. An analysis of Barkley Lake Regional Water District's water supply, indicates there are six types of potential contaminate sites with the possibility of contaminating the water supply located within the watershed are underground storage tanks, and rock quarries. Other areas of concern are the water treatment plant of the district, roads, bridges, and highways that pose a risk of the possibility of hazardous materials entering the water supply from traffic accidents, spills, and illegal dumping. In addition to households which are connected to the public waste system present a source of contamination due to the possibility of failing septic systems. Farms located within the watershed present the possibility of silation, pathogens, pesticides, and fertilizer entering the water supply. The completer plan is available at the Barkley Lake Regional Water district billing office at 1420 Canton Road, Cadiz, Ky. 42211. ## Logan / Todd Regional Water Commission Source Water Assessment #### Type and Location of Source Water LoganTodd Regional Water Commission (LTRWC) produces treated drinking water at the George W. Arnold Treatment Plant. The raw water intake is surface water located in the main channel of the Cumberland River, in Clarksville, Montgomery County, Tennessee. The protection area taken into consideration is from the LTRWC intake point to the Clarksville Water System intake upstream, Urban nonpoint source runoff may contribute contamination to the water supply by delivering sediment, oil and grease, rood salt, fertilizers, pesticides, nutrients, and contaminants to the Cumberland Transportation corridors pose a significant threat to water quality. Transportation accidents can substances into water threatening water quality*. Tractor-trailers, barges, rail cars and pipelines all have the potential for adverse impact of our water supply. A state primary road - TN 13 - crosses the Cumberland River, as do the Cunningham Bridge and the L&N Railroad Bridge, Water have been rated as reasonably susceptible (high), moderately susceptible (moderate) or slightly susceptible (low) based on geologic factors and human activities in the vicinity- of the -water source. The water source for LTRWC is rated as reasonably susceptible to potential contamination. For more information regarding the LTRWC source water protection area and plan, contact LTRWC located at 248 Tower Street in Guthrie, Kentucky. #### **Definitions & Acronyms** | Maximum Contaminant Level (MCL): (required definition) | The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. | |--|--| | Maximum Contaminant Level Goal (MCLG): (required definition) | The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. | | Maximum Residual Disinfectant Level (MRDL): | The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | Maximum Residual Disinfectant Level Goal (MRDLG): | The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination. | | Treatment Technique (TT): | A required process intended to reduce the level of a contaminant in drinking water. | | Action Level (AL): | The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | | Variances and Exemptions: | State or EPA permission not to meet an MCL or a treatment technique under certain conditions. | | Level 1 Assessment: | A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. | | Level 2 Assessment: | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. | #### Important Information about Your Drinking Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and - petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. - Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV /AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791). # 2022 Water Quality Data The data presented in this report is from the most recent testing done in accordance with administrative regulations in 401 KAR Chapter 8. As authorized and approved by the EPA, the State has reduced monitoring requirements for certain contaminants to less often than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data in this table, though representative, may be more than one year old. | | | | Allowable Levels | | | Highest Single
Level | Lowest
Monthly % | Violation | Likely Source | | | | |------|--|----------------|------------------|-----------|--------|---|---------------------|---------------------|--|--|--|--| | 1. T | urbidity | Neve | er more t | han 1 NTU | | 0.16 | 100% | No | Soil runoff | | | | | (1) | (NTU) TT Less than 0.3 NTU 95% of samples each month. (Population >10,000) | | | | | Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration. | | | | | | | | Re | gulated (| Contamina | ant Tes | t Results | | | | | | | | | | | Contam
[code] (| 1110 2010 1110 | MCL | MCLG | Repo | Range | Date of
Sample | Violation
Yes/No | Likely Source of
Contamination | | | | | Mic | crobial C | ontamina | nts | | | | | | | | | | | 2. | E. coli Bac
0% positiv | 48.100 | 0% | 0 | 0% | N/A | N/A | No | Human and animal fecal waste | | | | | Ra | dioactive | Contami | nants | | | | | | | | | | | 3. | Combined (pCi/L) | Radium | 5 | 0 | 1.5 | 1.5 - 1.5 | February
2017 | No | Erosion of natural deposits | | | | | 4. | Uranium (| ug/l) | 30 | 0 | 2.2 | 2.2 - 2.2 | February 2017 | No | Erosion of natural deposits | | | | | Inc | organic C | ontamina | nts | | | | | | | | | | | 4. | Barium
[1010] (pr | pm) | 2.0 | 2.0 | 0.04 | 6 0.046 - 0.0 | January
2022 | No | Drilling wastes; metal
refineries; erosion of
natural deposits | | | | | 5. | Fluoride
[1025] (pp | pm) | 4.0 | 4.0 | 0.69 | 0.69 - 0.6 | January
2022 | No | Water additive which promotes strong teeth | | | | | 6. | Nitrate
[1040] (p | opm) | 10 | 10 | 2.9 | 3 0.477 - 2. | 93 February
2022 | No | Fertilizer runoff; leaching
from septic tanks; sewage;
erosion of natural deposits | | | | | Sy | nthetic C | organic Co | ntamin | ants inc | luding | Pesticides a | nd Herbicid | es | | | | | | 7. | Atrazine
[2050] (pp | b) | 3.0 | 3.0 | BDI | . BDL - 0.2 | July 2022 | No | Runoff from herbicide used on row crops | | | | Maximum Contaminant Levels (MCLs) are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect. | | Contaminant | MCL | MCLG | Report
Level | Range | Date of | Violation | Likely Source of | |-----|--|--------------|-----------------|------------------------------|-------------------------------------|----------------------|--------------------|--| | Dis | infectants/Disinfe | ction B | yproduc | ts and Pre | cursors | | | | | 8. | Total Organic
Carbon (ppm) | π | N/A | 2.11
(lowest
average) | 0.77 - 3.06
(monthly
ratios*) | 2022 | No | Naturally present
in environment | | *Mo | nthly ratio is the % TOC removal achie | ved to the % | TOC removal rea | quired. Lowest annua | al average of the month | ly ratios must be 1. | 00 or greater to m | eet the treatment technique. | | 9. | Chlorine (ppm) | MRDL
= 4 | MRDLG
= 4 | 1.47
(highest
average) | 0.22 - 2.52 | 2022 | No | Water additive used to control microbes | | 10. | Haloacetic acids or
HAA (ppb) (Stage 2)
Individual Sites | 60 | N/A | 47
(annual
average) | 14 - 68 | 2022 | No | By-product of drinking
water disinfection | | 11. | Total Trihalomethanes or
TTHM (ppb) (Stage 2)
Individual Sites | 80 | N/A | 48
(annual
average) | 19-63 | 2022 | No | By-product of drinking water disinfection | | Secondary contamina | | pact on the health of the
rmation about the quality | consumers. They are being y of the water. | g included to provide | |------------------------|----------------------------|--|---|-----------------------| | Secondary Contaminant | Maximum Allowable
Level | Report Level | Range of Detection | Date of Sample | | Aluminum | 0.05 to 0.2 mg/l | 0.1 | 0.1 to 0.1 | March 2022 | | Chloride | 250 mg/l | 26.7 | 26.7 to 26.7 | March 2022 | | Corrosivity | Noncorrosive | -0.631 | -0.631 to -0.631 | March 2022 | | Fluoride | 2.0 mg/l | 0.71 | 0.71 to 0.71 | March 2022 | | рН | 6.5 to 8.5 | 7.34 | 7.34 to 7.34 | March 2022 | | Sulfate | 250 mg/l | 12.8 | 12.8 to 12.8 | March 2022 | | Total Dissolved Solids | 500 mg/l | 237 | 237 to 237 | March 2022 | | | Average | Range of Detection | |---------------------------------------|---------|--------------------| | Fluoride (added for dental health) | 0.8 | 0.66 - 0.97 | | Sodium (EPA guidance level = 20 mg/l) | 6.0 | 5.56 - 6.52 | ## Important Information about Lead Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. HWEA is responsible for providing high quality drinking water and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact HWEA at (270) 887-4232. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead | | Contaminant
(Units) [Sample Year] | Action
Level
(AL) | MCLG | Number of
Individual
Taps Over AL | 90% of Taps
Tested Were
Less Than | Range of
Samples | In
Compliance? | Likely Source of
Contamination | |---|--|-------------------------|--------------|---|---|---------------------|-------------------|--| | • | Copper (ppm) [2021]
(0 sites exceeded the AL) | 1.3
ppm | 1.3 ppm | 0 | 0.0627 | 0.0017 -
0.128 | Yes | Corrosions of household
plumbing systems;
erosion of natural
deposits | | | | 0 | out of 30 ta | ps were found to | o have levels of in | excess of the | copper action | level of 1.3 ppm | | | Lead (ppb) [2021]
(0 sites exceeded the AL) | 15
ppb | 0 ppb | 0 | 0.0 | 0.0 - 2.0 | Yes | Corrosions of household
plumbing systems;
erosion of natural
deposits | | | | | 0 out of 30 | taps were found | to have levels of | in excess of the | e lead action | level of 15 ppb | ### Logan/Todd Regional Water Commission 2022 Water Quality Data The data presented in this report are from the most recent testing done in accordance with administrative regulations in 401 KAR Chapter S. As authorized and approved by EPA, the State has reduced monitoring requirements for certain contaminants to less often than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data in this table, though representative, may be more than one year old. Unless otherwise noted, the report level is the highest level detected. | | Allowable Levels | Highest Single
Measurement | Lowest
Monthly % | Violation | Likely Source | |--|--|-------------------------------|---------------------|-----------|---------------| | Turbidity (NTU) TT * Representative samples of filtered water | No more than 1 NTU*
Less than 0.3 NTU in
95% of monthly
samples | 0.11 | 100 | No | Soil runoff | #### Regulated Contaminant Test Results (Annual Sample) | Contaminant [code]
(units) | MCL | MCLG | Report Level | Range | of Det | ection | Date of
Sample | Violation | Likely Source of Contamination | |--|------------------|-------------|------------------------------|----------|----------|-------------|-------------------|-------------------|--| | Inorganic Contaminants | | | | | | | | | | | Barium (ppm) | 2 | 2 | 0.0212 | 0.0212 | to | 0.0212 | Jun-22 | No | Drilling wastes; metal refineries; erosion of natura deposits. | | Fluoride (ppm) | 4 | 4 | 0.641 | 0.641 | to | 0.641 | Jun-22 | No | Water additive which promotes strong teeth. | | Nitrate (ppm) | 10 | 10 | 0.572 | 0.572 | to | 0,572 | Feb-22 | No | Fertilizer runoff; leaching from septic tanks,
sewage; erosion of natural deposits. | | Disinfection/Disinfection | Byproducts | and Precur | ors | | | | | | | | Total Organic Carbon
(ppm)
(measured as ppm, but
reported as a ratio) | TT* | N/A | 1.87
(lowest
average) | 1.70 | to | 2.02 | 2022 | No | Naturally present in environment. | | *Month! | y ratio is the 9 | TOC removal | achieved to the % | TOC remo | val requ | ired. Annua | l average of t | he monthly ratios | must be 1.00 or greater for compliance. | | Chlorine (ppm) | MRDL
= 4 | MRDLG
=4 | 2.50
(highest
average) | 1.6 | to | 3.3 | 2022 | No | Water additive used to control microbes. | | HAA (ppb) (Stage 2)
[Haloacetic acids]
(Annual Sample) | 60 | N/A | 28
(high site) | 28 | to | 28 | 2022 | No | Byproduct of drinking water disinfection. | | TTHM (ppb) (Stage 2) [Total trihalomethanes] (Annual Sample) | 80 | N/A | 57
(high site) | 57 | to | 57 | 2022 | No | Byproduct of drinking water disinfection. | Some or all of these definitions may be found in this report: Maximum Contaminant Level (MCL) - the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level Goal (MCLG) - the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of asfety. Maximum Residual Disinfectant Level (MRDL) - the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG) the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Not Applicable (N/A) - does not apply. Parts per million (ppm) - or milligrams per liter, (mg/l). One part per million corresponds to one minute in two years or a single pemy in \$10,000. Parts per billion (ppb) - or micrograms per liter, (µg/L). One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000. Parts per trillion (ppt) - one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000. Parts per quadrillion (ppq) - one part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000,000. Picocuries per liter (pCi/L) - a measure of the radioactivity in water. Nephelometric Turbidity Unit (NTU) - a measure of the clarity of water. Turbidity has no health effects. However, turbidity can provide a medium for microbial growth. Turbidity is monitored because it is a good indicator of the effectiveness of the filtration system. Treatment Technique (TT) - a required process intended to reduce the level of a contaminant in drinking water. 2022 000 #### Barkley Lake Regional Water District 2022 CCR To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect. The data presented in this report are from the most recent testing done in accordance with administrative regulations in 401 KAR chapter 8. As authorized by EPA, the State has reduced monitoring requirements for certain contaminants to less often than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data in this table, though representative, may be more than one year old. Copies of this report are | available upon request by contacting our office during business hours | available upon reques t | by contacting | our office during | business hours. | |---|--------------------------------|---------------|-------------------|-----------------| |---|--------------------------------|---------------|-------------------|-----------------| | Regulated Contaminant | Test Res | ults | Barkley Lal | ke Regional | Water Dist | rict | | | |---|------------------------------|------------------|---|-----------------|-----------------------|-----------------|---------------|--| | Contaminant | | | Report | Ra | nge | Date of | | Likely Source of | | [code] (units) | MCL | MCLG | Level | of De | tection | Sample | Violation | Contamination | | Inorganic Contaminants | S | | - | des . | | | | | | Barium
[1010] (ppm) | 2 | 2 | 0.024 | 0.024 to | 0.024 | Aug-22 | No | Drilling wastes; metal refineries; erosion of natural deposits | | Fluoride
[1025] (ppm) | 4 | 4 | 0.84 | 0.84 to | 0.84 | Aug-22 | No | Water additive which promotes strong teeth | | Nitrate
[1040] (ppm) | 10 | 10 | 0.544 | 0 to | 0.544 | Fcb-22 | No | Fertilizer runoff; leaching from
septic tanks, sewage; erosion of
natural deposits | | Disinfectants/Disinfection | n Byprod | lucts and Pro | ecursors | | | | | | | Total Organic Carbon (ppm)
(measured as ppm, but
reported as a ratio) | TT* | N/A | 1.94
(lowest
average) | 1.11 to (month) | 2.82
y ratios) | 2022 | No | Naturally present in environment | | Monthly ratio is the % TOC r | emoval achi | eved to the % T | OC removal requ | uired. Annual a | verage must be | e 1.00 or great | er tor compli | ance. | | Chlorine
(ppm) | MRDL
= 4 | MRDLG
= 4 | 1.45
(highest
average) | 0.31 to | 2.09 | 2022 | No | Water additive used to control microbes. | | HAA (ppb) (Stage 2)
[Haloacetic acids] | 60 | N/A | 30
(high site
average) | 18 to | 34
lividual sites) | 2022 | No | Byproduct of drinking water disinfection | | TTHM (ppb) (Stage 2)
[total trihalomethanes] | 80 | N/A | 37
(high site
average) | 22 to. | 54
lividual sites) | 2022 | No | Byproduct of drinking water disinfection. | | | | | | | | | | | | Household Plumbing Co | ntaminar | nts | | | | | | | | Copper [1022] (ppm) Round 1
sites exceeding action level
0 | AL =
1.3 | 1.3 | 0.564
(90 ^{lh}
percentile) | 0.0086 to | 0.775 | Aug-20 | No | Corrosion of household plumbing systems | | Lead [1030] (ppb) Round 1
sites exceeding action level
1 | AL =
15 | 0 | 4
(90 ^{,h}
percentile) | 0 to | 20 | Aug-20 | No | Corrosion of household plumbing systems | | Other Constituents | | | | A | | | | | | Turbidity (NTU) TT * Representative samples | | owable
.evels | Highest Singl
Measuremen | | Lowest Monthly % | Violation | Likely Sc | ource of Turbidity | | Turbidity is a measure of the clarity of the water and not a | No more that
Less than 0. | an I NTU* | 0.2 | | 100 | No | Linely 50 | Soil runoff | Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments. During the past year we were required to conduct one Level 1 assessment. One Level 1 assessment was completed. In addition, we were required to take one corrective action and we completed this action. The assessment was due to an inadequate number of samples taken in regard to the bacteria detection noted above. The corrective action completed was to take the required samples and to adjust our sampling procedures accordingly. #### Some or all of these definitions may be found in this report: Maximum Contaminant Level (MCL) - the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level Goal (MCLG) - the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety Maximum Residual Disinfectant Level (MRDL) - the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG) - the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Below Detection Levels (BDL) - laboratory analysis indicates that the contaminant is not present. vNot Applicable (N/A) - does not apply. Parts per million (ppm) - or milligrams per liter, (mg/I). One part per million corresponds to one minute in two years or a single penny in \$10,000. Parts per billion (ppb) - or micrograms per liter, (gg/L). One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000. Parts per trillion (ppt) - one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000. Parts per quadrillion (ppq) - one part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000,000. Picocuries per liter (pCi/L) - a measure of the radioactivity in water. Millirems per year (mrem/yr) - measure of radiation absorbed by the body. Million Fibers per Liter (MFL) - a measure of the presence of asbestos fibers that are longer than 10 micrometers. Nephelometric Turbidity Unit (NTU) - a measure of the clarity of water. Turbidity has no health effects. However, turbidity can provide a medium for microbial growth. Turbidity is monitored because it is a good indicator of the effectiveness of the filtration system. Variances & Exemptions (V&E) - State or EPA permission not to meet an MCL or a treatment technique under certain conditions. Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system shall follow. Treatment Technique (TT) - a required process intended to reduce the level of a contaminant in drinking water. Spanish (Esparfol) Este informe conticne informacidn muy importante sobre la calidad de su agua beber. Traduzcalo o hable con alguien que lo entienda bien.